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1. Introduction 

Currently, a common practice in wind modeling for small-arms applications is to 
assume that a constant crosswind exists across the entire range to a target. We 
know, however, that wind does not behave this way in reality. Analysis and study 
of the behavior of wind can help efforts to understand and reduce the delivery error 
attributed to crosswind.  

The first goal of this study was to develop a methodology to generate synthetic 
wind fields (i.e., the crosswind as a function of location at a fixed point in time) 
based on empirical data. The ability to incorporate synthetic wind fields into 
existing simulations will increase those models’ accuracy and provide us with a 
better understanding of weapon accuracy. The differences between the effects of 
constant crosswind across all ranges and the effects of variable wind are likely small 
at close ranges, but in long-range applications the difference can be large, and we 
could be underestimating or overestimating the magnitude of deflection due to 
crosswind at range. 

This could, in turn, lead to an overestimation or underestimation of the gains in 
accuracy from a wind estimation and correction system. Moreover, the ability to 
model variable wind will give us the ability to more accurately model the 
performance of these systems directly. With an explicitly modeled synthetic wind 
field we can better model the performance of a system that estimates and corrects 
for that wind. 

The second goal of this study was to develop a metric called Equivalent Constant 
Crosswind (ECC), which allows for the effects of variable crosswind on a 
downrange projectile to be modeled without having to explicitly model the 
variation of the wind at every step. This will allow for easy incorporation of wind 
fields into existing models without extensive changes and without substantially 
increasing the runtimes required. 

To accomplish the study goals, we analyzed a set of crosswind data obtained from 
an anemometer array at Fort Benning in December 2012 and investigated several 
methodologies to simulate the observed variation of crosswind with range, 
including treating each anemometer independently, autoregressive models of order 
p (where the previous p crosswind measurements are used to determine the next 
crosswind value), and sampling against a multivariate normal distribution. 

We ran a Monte Carlo analysis over a matrix of input parameters to determine the 
effect of those parameters on ECC. The parameters most relevant to this analysis 
were shooter-to-target range, muzzle velocity, projectile mass, drag coefficient 
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exponent, wind standard deviation (i.e., the standard deviation of the crosswind 
magnitude at the measurement points over time), and spatial wind correlation. 

Section 2 will summarize the analysis done on the data set obtained at Fort Benning 
in 2012. Section 3 will detail the methodology for using McCoy’s lag time 
methodology alongside the Weinacht-Cooper-Newill (WCN) projectile flyout 
methodology to obtain measures of ECC. Section 4 will briefly summarize the ECC 
results obtained from the observed data and the assumptions made in obtaining 
them. Section 5 will outline the different approaches used to model the observed 
wind behavior. Section 6 will present the recommendations for how to use the 
model that fits the data best along with the effects of changing different variables. 
Section 7 will present the conclusion. 

2. Analyzing Wind Data 

In December 2012, a set of wind values was collected at Fort Benning. Ten 
anemometers (A1–A10) were placed along a straight line spaced 110 m apart. Wind 
speed and direction were recorded every second for just over 3 h, and from these 
values the crosswind and range wind were derived. For our purposes, crosswind is 
defined as the component of the wind perpendicular to the line connecting the 
anemometers, with positive crosswind values to the right as you look from A1 to 
A10, and range wind is defined as the component of the wind parallel to the line 
connecting the anemometers, with positive range wind in the direction of ascending 
anemometer numbers. Because crosswind is a much bigger contributor to 
deflection at range than range wind, we only analyzed the crosswind component of 
the data set. 

The crosswind measurements from each anemometer were analyzed for normality 
and were found in most cases to be close to normal.1 A couple of the locations 
showed a somewhat pronounced skew. Figure 1 is a histogram of the measured 
crosswind velocities at A3 that appear to be roughly normal. Figure 2 is a histogram 
of the measured crosswind velocities at A4 that show a pronounced skew. To 
simplify calculations when modeling variable wind fields, the wind measurements 
at each station were assumed to be normal.2 
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Fig. 1 Histogram of measured crosswind values from A3 

 

Fig. 2 Histogram of measured crosswind values from A4 

Mean and standard deviations of the crosswind velocities at each anemometer were 
also obtained from the data and are shown in Table 1 and graphically in Figs. 3 and 
4. For these calculations, each measurement (taken at the same location 
approximately once per second) was assumed to be an independent sample. 
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Table 1 Crosswind means and standard deviations (in meters/second) 

 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 
Mean –1.55 –1.59 –1.71 –1.77 –1.47 –2.69 –1.41 –2.74 –2.93 –3.01 

Std. Dev. 1.28 1.55 1.34 1.59 1.58 1.99 1.61 1.83 1.59 1.72 

 

 

Fig. 3 Mean crosswind velocity vs. range 

 

Fig. 4 Crosswind standard deviation vs. range 

For the remainder of the report, the mean and standard deviation of the crosswind 
at anemometer 𝐴𝐴𝑛𝑛 will be denoted 𝜇𝜇𝑛𝑛 and 𝜎𝜎𝑛𝑛, respectively. Instances of the 
crosswind at anemometer 𝐴𝐴𝑛𝑛 will be denoted 𝑊𝑊𝑛𝑛. 

To model the behavior of the crosswind accurately we first had to determine the 
correlation between the observed wind values. We can easily determine the 
correlation coefficient 𝜌𝜌 between stations 𝐴𝐴𝑛𝑛 and 𝐴𝐴𝑚𝑚 by the following equation 
(Box 1976): 
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 𝜌𝜌(𝐴𝐴𝑛𝑛,𝐴𝐴𝑚𝑚) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑊𝑊𝑛𝑛,𝑊𝑊𝑚𝑚)
𝜎𝜎𝑛𝑛𝜎𝜎𝑚𝑚

 . (1) 

This generated Table 2, which lists correlation coefficients between each pair of 
stations. A correlation coefficient of 1.0 indicates total positive correlation between 
2 variables, meaning that a linear equation describes their relationship perfectly. A 
correlation coefficient of 0 indicates no linear correlation between 2 variables. 
Values in between indicate varying levels of positive correlation between variables.  

Table 2 Pairwise correlation coefficients between anemometers 

 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 
A1 1.00 0.27 0.16 0.21 0.20 0.25 0.21 0.17 0.17 0.18 
A2 0.27 1.00 0.19 0.20 0.29 0.23 0.22 0.19 0.18 0.17 
A3 0.16 0.19 1.00 0.23 0.27 0.30 0.24 0.21 0.21 0.21 
A4 0.21 0.20 0.23 1.00 0.32 0.32 0.31 0.28 0.25 0.25 
A5 0.20 0.29 0.27 0.32 1.00 0.36 0.34 0.30 0.29 0.24 
A6 0.25 0.23 0.30 0.32 0.36 1.00 0.53 0.43 0.39 0.35 
A7 0.21 0.22 0.24 0.31 0.34 0.53 1.00 0.48 0.36 0.34 
A8 0.17 0.19 0.21 0.28 0.30 0.43 0.48 1.00 0.43 0.41 
A9 0.17 0.18 0.21 0.25 0.29 0.39 0.36 0.43 1.00 0.47 
A10 0.18 0.17 0.21 0.25 0.24 0.35 0.34 0.41 0.47 1.00 

 
For the remainder of this report, correlation coefficients between stations 𝐴𝐴𝑛𝑛 and 
𝐴𝐴𝑚𝑚 will be denoted 𝜌𝜌𝑛𝑛,𝑚𝑚. There is no difference between 𝜌𝜌𝑛𝑛,𝑚𝑚 and 𝜌𝜌𝑚𝑚,𝑛𝑛, but the 
preference will be for the smaller number to be listed in the subscript first. 

In the next section, we will explain in some depth the methodology used to analyze 
the observed crosswind data and ultimately to generate synthetic wind fields. 

3. Calculation of Horizontal Deflection and Equivalent Constant 
Crosswind 

To determine the horizontal deflection imparted by a variable crosswind on a 
projectile at its target, we used a combination of equations detailing deflection due 
to variable crosswind (McCoy 1976) and the WCN equations detailing trajectories 
of direct-fire munitions (Weinacht et al. 2005). 

3.1 McCoy Methodology for Deflection at Range Due to 
Crosswind 

To determine the horizontal deflection (𝑍𝑍𝑅𝑅𝑖𝑖) imparted at range 𝑅𝑅 by a constant 
crosswind occurring between ranges 𝑋𝑋𝑖𝑖−1 and 𝑋𝑋𝑖𝑖 (for 𝑋𝑋𝑖𝑖,𝑋𝑋𝑖𝑖+1 ≤ 𝑅𝑅), McCoy (1976) 
gives the following equation3: 
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 𝑍𝑍𝑅𝑅𝑖𝑖 = 𝑊𝑊𝑍𝑍(𝑖𝑖−1,𝑖𝑖) ��𝑡𝑡𝑅𝑅 − 𝑡𝑡𝑋𝑋𝑖𝑖−1 −
𝑅𝑅−𝑋𝑋𝑖𝑖−1
𝑉𝑉𝑋𝑋𝑖𝑖−1

� − �𝑡𝑡𝑅𝑅 − 𝑡𝑡𝑋𝑋𝑖𝑖 −
𝑅𝑅−𝑋𝑋𝑖𝑖
𝑉𝑉𝑋𝑋𝑖𝑖

�� , (2) 

where 

𝑊𝑊𝑍𝑍(𝑖𝑖−1,𝑖𝑖) = magnitude of crosswind between ranges 𝑋𝑋𝑖𝑖−1 and 𝑋𝑋𝑖𝑖, 

𝑡𝑡𝑋𝑋𝑖𝑖 = time of flight of the projectile to range 𝑋𝑋𝑖𝑖, and  

𝑉𝑉𝑋𝑋𝑖𝑖 = residual velocity of the projectile at range 𝑋𝑋𝑖𝑖. 

The term 𝑡𝑡𝑅𝑅 − 𝑡𝑡𝑋𝑋𝑖𝑖 −
𝑅𝑅−𝑋𝑋𝑖𝑖
𝑉𝑉𝑋𝑋𝑖𝑖

 in Eq. 2 represents the difference between actual flight 

time between range 𝑋𝑋𝑖𝑖 and range 𝑅𝑅 and the time between the same ranges in a 
vacuum. This is commonly referred to as “lag time”.  

If there is a set of monotonically increasing ranges {𝑋𝑋0,𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛}, 𝑋𝑋𝑖𝑖 ≤
𝑅𝑅 ∀ 𝑖𝑖 ≤ 𝑛𝑛, and a corresponding set of crosswinds �𝑊𝑊𝑍𝑍(0,1) ,𝑊𝑊𝑍𝑍(1,2) , … ,𝑊𝑊𝑍𝑍(𝑛𝑛−1,𝑛𝑛)� 
where crosswind between ranges 𝑋𝑋𝑖𝑖−1 and 𝑋𝑋𝑖𝑖 is constant and equal to 𝑊𝑊𝑍𝑍(𝑖𝑖−1,𝑖𝑖), then 
the total horizontal deflection at range 𝑅𝑅 due to crosswind is equal to 

 𝑍𝑍𝑅𝑅 = � 𝑍𝑍𝑅𝑅𝑖𝑖
𝑛𝑛

𝑖𝑖=1
 . (3) 

It stands to reason that there exists a constant crosswind that would have produced 
the same horizontal deflection as any particular variable wind field. If we apply 
Eq. 2 across a trajectory with constant crosswind 𝑊𝑊𝑍𝑍, range 𝑅𝑅, and time of flight t, 
we arrive at the following equation for 𝑍𝑍𝑅𝑅: 

𝑍𝑍𝑅𝑅 = 𝑊𝑊𝑍𝑍 �𝑡𝑡 −
𝑅𝑅
𝑉𝑉0
� .          (4) 

By combining Eqs. 3 and 4 and solving for 𝑊𝑊𝑍𝑍, the constant crosswind that would 
produce the same deflection, or ECC, is given by 

 𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑊𝑊𝑍𝑍 =
� 𝑍𝑍𝑅𝑅𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑡𝑡− 𝑅𝑅
𝑉𝑉0

  . (5) 

3.2 Incorporation with WCN Model 

The calculation of ECC depends on time of flight and residual velocity for every 
range 𝑋𝑋𝑖𝑖 used as an input. To determine these quantities at a given range for a 
general case that correctly models flight in the transonic and subsonic regimes, we 
use the WCN methodology (Weinacht 2014). A closed-form solution can be used 
if the projectile’s velocity remains supersonic. This solution is outlined in  
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Appendix A. For cases where flight crosses velocity regimes, we use Oberle’s 
implementation of the WCN methodology (Oberle 2009). 

Under the assumption that the drag curve is continuous, Oberle’s model requires 
the following inputs: 

• Muzzle velocity 

• Drag coefficient at the muzzle velocity 

• Drag coefficient exponent in the supersonic velocity regime 

• Transition Mach number between transonic and supersonic velocity 
regimes 

• Transition Mach number between subsonic and transonic velocity regimes 

• Drag coefficient in the subsonic velocity regime (𝐶𝐶𝐷𝐷|𝑆𝑆𝑆𝑆𝑆𝑆) 

• Muzzle retardation 

If we are to investigate notional projectiles with modified mass and velocity, we 
must have expressions that allow us to find the corresponding muzzle retardation 
and drag coefficient at the muzzle velocity. Muzzle retardation is expressed as 
follows: 

 �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
0

= −1
2𝑚𝑚

𝜌𝜌𝑉𝑉0𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝐷𝐷|𝑉𝑉0  , (6) 

where 

𝑚𝑚 = projectile mass, 

𝜌𝜌 = air density, 

𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟 = reference area of the projectile, and 

𝐶𝐶𝐷𝐷|𝑉𝑉0 = drag coefficient at muzzle velocity. 

If we know the air density as well as the mass, muzzle retardation, and reference 
area of the projectile, we can solve Eq. 6 for 𝐶𝐶𝐷𝐷|𝑉𝑉0 as a function of known quantities 
and not specify it explicitly. 

 𝐶𝐶𝐷𝐷|𝑉𝑉0 =
−2𝑚𝑚�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�0
𝜌𝜌𝑉𝑉0𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟

 . (7) 

Oberle includes the following expression for deriving muzzle retardation from a 
known set of values for bullets with the same basic shape and reference area but 
with different mass and muzzle velocity values. 
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 �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑁𝑁𝑁𝑁𝑁𝑁

= �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾

�𝑚𝑚𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾
𝑚𝑚𝑁𝑁𝑁𝑁𝑁𝑁

� � 𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁
𝑉𝑉𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾

�
1−𝑛𝑛

  . (8) 

Quantities with the Known subscript refer to known values and quantities with the 
New subscript refer to modified velocity and mass. This means that if there is an 
array of associated muzzle velocity, muzzle retardation, and mass and drag 
coefficient exponent values, then muzzle retardation can be expressed as a function 
of those values and modified mass and/or muzzle velocity values. 

Thus muzzle retardation and drag coefficient at the muzzle can be removed as 
independent variables in favor of mass, air density, and reference area, and the list 
of required inputs is modified to the following: 

• Muzzle velocity 

• Projectile mass 

• Projectile reference area/diameter 

• Air density 

• Set of associated supersonic drag coefficient exponents, muzzle velocities, 
muzzle retardations, and masses 

• Transition Mach number between transonic and supersonic velocity 
regimes (assumed to be 1.05 for this analysis) 

• Transition Mach number between subsonic and transonic velocity regimes 
(assumed to be 0.85 for this analysis) 

• Drag coefficient in the subsonic velocity regime 

Using these inputs, the trajectories can then be run using Oberle’s implementation 
of the WCN model. 

4. Analysis of Equivalent Constant Crosswind from Wind Data 

We first analyzed the behavior of the ECC of the Fort Benning wind data. The 
results of this analysis became the standard against which we judged the 
performance of our proposed synthetic wind field models. The data set included 
crosswind values at each of the 10 anemometers at 11,085 different fixed times. We 
treated these as independent samples for the purpose of this analysis. We assumed 
that the crosswind values measured at each station at the time the shot was fired 
would be the crosswind values experienced by the projectile when it arrived at that 
station. That is, time variation of the crosswind during a trajectory did not enter into 
the calculation of deflection. Second, we assumed that the crosswind at any 
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trajectory location was equal to the measured crosswind value at the closest 
anemometer. 

Adjacent anemometers were separated by 110 m in a straight line from 0 to 990 m. 
We determined that our ranges of interest were every 55 m from the shooter to the 
target; that is, at each anemometer and at each point equidistant from 2 adjacent 
anemometers. This split the range into 18 subsections with each assumed to have 
constant wind within them. To find the ECC for a given range R, we used Eq. 2 to 
determine the deflection induced at R by the wind on each interval and then we 
summed those deflections and input the sum into Eq. 5 to obtain the ECC. 

We used the WCN methodology to find the time of flight and residual velocity at 
each range of interest using the M855/M4 weapon/ammunition combination  
𝑉𝑉0 = 866 𝑚𝑚/𝑠𝑠, 𝑚𝑚 = 4 𝑔𝑔, 𝑑𝑑 = 5.56𝑚𝑚𝑚𝑚, �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�
0

= −1.028, 𝑛𝑛 = 0.53, 𝐶𝐶𝐷𝐷|𝑆𝑆𝑆𝑆𝑆𝑆 =

0.198, ρ = 1.225 𝑘𝑘𝑘𝑘/𝑚𝑚^3. ECC depends on the variables that describe the 
behavior of the wind (mean and standard deviation at each location and correlation 
between locations) as well as the inputs that describe the flight of the particular 
projectile being analyzed. Section 6 and Appendix B go into greater detail about 
how much the ECC’s behavior depends on each of these inputs. Figure 5 shows the 
mean ECC value versus range from the Fort Benning data set (𝜇𝜇𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵), and Fig. 6 
shows the standard deviation of ECC versus range (𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵). 

 

Fig. 5 Mean values of 𝝁𝝁𝑬𝑬𝑬𝑬𝑬𝑬𝑩𝑩  vs. range observed at Fort Benning 
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Fig. 6 Standard deviation values of 𝝈𝝈𝑬𝑬𝑬𝑬𝑬𝑬𝑩𝑩  vs. range observed at Fort Benning 

The value of 𝜇𝜇𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵 decreases with range because the means of the winds get 
stronger in the negative direction as range increases, as shown in Table 1. The value 
of 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵 decreases with range until halfway downrange, at which point it begins to 
increase gently. The increase in the longer ranges appears to be a consequence of 
standard deviation of measured crosswind increasing with range, shown in Table 1, 
and the increase in correlation among anemometers A6–A10, shown in Table 2 (the 
correlation values among anemometers A1–A5 range from 0.16 to 0.32; the 
correlation values among anemometers A6–A10 range from 0.34 to 0.53). 

The distributions of ECC at each range were found to behave similarly to the 
distributions of the crosswind measurements at each range.4 Figure 7 shows the 
distribution of ECC values at 110 m, which appears to be approximately normal. 
Figure 8 shows the distribution of ECC values at 990 m, which has some 
irregularity including a small secondary local maximum to the left of the mean. 
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Fig. 7 Histogram of calculated ECC values at 110 m 

 

Fig. 8 Histogram of calculated ECC values at 990 m 

5. Generating Synthetic Wind Fields 

Next we attempted to find a model that could reproduce the behavior of the wind 
in the Fort Benning data set as closely as possible. We first generated a wind field 
by drawing the wind at each station independently using 𝜇𝜇𝑛𝑛 and 𝜎𝜎𝑛𝑛 at each station 
𝐴𝐴𝑛𝑛. This produced 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸 results that diverged unacceptably from 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵. Next we 
implemented an autoregressive model, which generated each wind measurement 
from some number of the measurements that preceded it. This model generated 
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𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸 results much closer to 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵, but the fact that it depended on assigning an 
arbitrary directionality to the wind measurement locations introduced an ambiguity 
to its implementation that led us to investigate alternate methodologies. Further 
discussion of the foregoing methodologies is included in Appendix C. To refine the 
results from the independent and autoregressive models, it is necessary to find a 
model that not only preserves the distributions of measured wind at each station, 
but the correlations between all pairs of stations. 

Upon investigation, a multivariate normal distribution addresses all of these 
concerns. If we let 1) 𝑊𝑊���⃗  be an n-dimensional vector whose components are random 
variables 𝑊𝑊1,𝑊𝑊2, … ,𝑊𝑊𝑛𝑛, 2) 𝛴𝛴, the covariance matrix, be an n × n matrix whose i,jth 
entry is the covariance of 𝑊𝑊𝑖𝑖 and 𝑊𝑊𝑗𝑗, 3) 𝑍⃗𝑍 be an n-dimensional vector whose 
components are independent standard normal variates, and 4) µ�⃗  be an  
n-dimensional vector whose ith entry is 𝐸𝐸(𝑊𝑊𝑖𝑖), then 

 𝑊𝑊���⃗ = µ�⃗ + 𝐴𝐴𝑍⃗𝑍 , (9) 

where 𝐴𝐴 is an n × n matrix such that 𝐴𝐴 𝐴𝐴𝑇𝑇 = 𝛴𝛴 (Gentle 2009). 

This is a comparatively easy model to implement. The most complicated part is the 
calculation of the matrix 𝐴𝐴. One type of matrix with this property is known as the 
Cholesky decomposition, and there is a straightforward process by which it can be 
calculated (Golub 1996). 

The number of iterations to run in each Monte Carlo simulation was determined by 
the following formula (Oberle 2015): 

 𝑛𝑛 = �
𝑧𝑧𝛼𝛼

2�
𝜎𝜎

𝛥𝛥
�
2
, (10) 

where 

𝑛𝑛 = number of iterations, 

𝑧𝑧𝛼𝛼
2�
 = standard normal z-score corresponding to a confidence interval of  

100(1- 𝛼𝛼)%,  

𝜎𝜎 = predicted standard deviation of the data, and 

𝛥𝛥 = half length of the confidence interval. 

We calculated the number of iterations using the chosen value of wind standard 
deviation as 𝜎𝜎, a confidence level 100(1- 𝛼𝛼)% of 98%, and an interval half-length 
𝛥𝛥 of 0.01 m/s. We used a wind standard deviation of 1.30 m/s to yield 91,461 
iterations, which we rounded up to 100,000. 



 

Approved for public release; distribution is unlimited. 
13 

With 100,000 runs, it is easy to verify that 𝜇𝜇𝑛𝑛 and 𝜎𝜎𝑛𝑛 is preserved for all 𝑛𝑛 and that 
all of the pairwise correlations between stations are preserved. Figure 9 shows the 
results of a comparison of 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀 with 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵. 

 
Fig. 9 Multivariate normal sampling 𝝈𝝈𝑬𝑬𝑬𝑬𝑬𝑬 results 

Using this method, 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀 differed from 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵 by no more than 1% at any range. 
As with the other models, 𝜇𝜇𝐸𝐸𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀  remains within 1% of 𝜇𝜇𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵 at all ranges. 

6. Effects of Wind Field Changes 

The aim of this report is to develop a model that can be used to generate general 
crosswind fields based on a set of inputs. We can make small changes to the 
observed data to see how changes to various inputs affect the ECC output. 

Changing the wind standard deviation roughly represents a vertical stretch or 
compression of the 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸 versus range curve, as shown in Fig. 10. Uniformly halving  
𝜎𝜎𝑛𝑛 for all 𝑛𝑛 has the effect of halving 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸 at each range. Adding 50% to 𝜎𝜎𝑛𝑛 for all 
𝑛𝑛 has the effect of adding 50% to 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸 at each range.  
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Fig. 10 Comparison of 𝝈𝝈𝑬𝑬𝑬𝑬𝑬𝑬 at different values of wind standard deviation 

Changing the correlation values changes the slope of the 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸 versus range curve. 
In Fig. 11 we tested 3 levels of correlation. The baseline case was the one outlined 
in Table 2. In the low correlation case we subtracted 0.1 from each observed 
correlation. In the high correlation case we added 0.1 to each observed correlation 
(apart from the self-correlations, which were left at 1.0). The higher the correlation, 
the closer 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸 stays to the initial chosen value of the wind standard deviation. 

 

Fig. 11 Comparison of 𝝈𝝈𝑬𝑬𝑬𝑬𝑬𝑬 at different levels of correlation 
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In the data set obtained from Fort Benning, 𝜎𝜎1 < 𝜎𝜎𝑛𝑛 for all 𝑛𝑛 ≠ 1, yet 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸 < 𝜎𝜎1 
for all 𝑛𝑛 > 1, despite a small increase starting around 500 m. This is because the 
winds at individual anemometers are only weakly correlated, meaning there is a 
strong possibility that winds at separate stations act in opposing directions and 
partially cancel each other out. As shown in Fig. 11, with higher correlations among 
anemometers, 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸 falls less with range than it does with lower correlations since 
more highly correlated winds are more likely to act in the same direction. 

The small increase in 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸 observed from 500 to 1,000 m with this particular data 
set is caused by 2 factors: 1) 𝜎𝜎𝑛𝑛 tends to increase with range and 2) 𝜌𝜌𝑛𝑛,𝑚𝑚 is 
uniformly greater when 6 ≤ 𝑛𝑛,𝑚𝑚 ≤ 10 than when 1 ≤ 𝑛𝑛,𝑚𝑚 ≤ 5. Figure 11 shows 
that an increase in correlation causes an increase in 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸. In this case, when a 
projectile flies through the ranges covered by anemometers A6–A10, it is more likely 
to encounter crosswinds acting in concert with each other and therefore 
compounding the deflection at the target rather than canceling each other out. 

We found that 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸 depended on 𝜎𝜎𝑛𝑛 and 𝜌𝜌𝑛𝑛,𝑚𝑚 but not 𝜇𝜇𝑛𝑛. Conversely, 𝜇𝜇𝐸𝐸𝐸𝐸𝐸𝐸 
depended only on 𝜇𝜇𝑛𝑛 and not on 𝜎𝜎𝑛𝑛 or 𝜌𝜌𝑛𝑛,𝑚𝑚. Figure 12 shows 𝜇𝜇𝐸𝐸𝐸𝐸𝐸𝐸 for the 3 
correlation scenarios previously described, and the curves overlap completely. The 
result is the same for any cases that use the same 𝜇𝜇𝑛𝑛 for all 𝑛𝑛. 

 

Fig. 12 Comparison of 𝝁𝝁𝑬𝑬𝑬𝑬𝑬𝑬 at different levels of correlation 
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order effect on the round’s velocity over its flight and thus plays a much smaller 
role than mass and velocity in determining the deflection of the round due to 
crosswind. Graphs presenting these results are included in Appendix C. The fact 
that the ballistic inputs had little impact on the 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸 values indicates that we can 
get a good approximation of 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸 for many classes of projectiles by explicitly 
modeling it for only one configuration. 

7. Conclusion 

This report has presented a way to generate synthetic wind fields over ranges 
relevant to small-arms fire and argues that variable wind fields appear to behave 
according to a multivariate normal distribution. First we tried modeling wind 
measurements independently, but the modeled wind behavior did not align well 
enough with the observed data. An autoregressive model brought us closer to 
matching the observed results but exhibited ambiguity about exactly how to 
configure the model. In addition, the autoregressive model used only wind 
measurements from one direction to generate new wind measurements, but ideally 
the model should be independent of the direction the shooter is facing. Sampling 
against a multivariate normal distribution was found to strongly correlate to the 
observed wind across all metrics and operates independently of the locations of the 
shooter and target. 

We developed a metric to measure the effect induced by a variable crosswind 
experienced by a projectile throughout its trajectory. For any deflection induced by 
crosswind at the target range there has to be a constant crosswind that, if applied 
over the whole range, would have produced that same deflection. This was 
designated the ECC, and analysis was performed to characterize its behavior with 
respect to a number of different inputs to the model. 

We found that the ECC at a given range behaved according to a normal distribution, 
and that 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸 tends to fall as range increases for cases where the wind standard 
deviation and correlation are constant across the whole range. In the case of the 
data from Fort Benning, the wind standard deviation varied at each station, which 
along with a variation in correlation led to a small increase in 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸 at longer ranges. 
Even in the case of the data from Fort Benning, though the value of 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸 increases, 
the maximum value it attains is at least 20% less than the minimum wind standard 
deviation measured at any single location. This implies that using a constant 
standard deviation derived from any one measurement location to model crosswind 
across the whole range will tend to overestimate the horizontal error due to 
crosswind, though the overestimation is comparatively small at shorter ranges. The 
factors with the greatest impact on 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸 were the range of projectile travel, the 
standard deviation of crosswind measurement, and correlation between crosswind 
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measurements. Ballistic characteristics of the projectile such as mass, drag 
coefficient exponent, and muzzle velocity had comparatively little impact on the 
behavior of ECC. 

The mechanism driving the decline in 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸 with range appears to be decreasing 
correlation of crosswind measurements with increasing spatial separation. Any 2 
winds separated by only a short distance tend to be more strongly correlated, but as 
range between crosswind measurements increases, that correlation fades. The 
crosswind values at distant ranges become only weakly correlated with the 
crosswind value at the shooter’s location, which makes downrange winds more 
likely to push in opposing directions the farther the projectile flies. 

The ability to model synthetic wind fields will better allow analysis of the 
effectiveness of wind correction methodologies where wind is read at multiple 
points downrange compared with the effectiveness of correcting using the wind at 
the shooter’s location in the presence of variable wind. Further experiments could 
provide better data for long-term wind standard deviation and spatial wind 
variability at various locations, times of day, and times of year. 
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8. Notes 

1. Anderson-Darling and Kolmogorov-Smirnov tests indicated a departure from 
normality but show very high sensitivity for sample sizes as large as those used 
here; skewness test indicated approximate symmetry with a persistent small-
to-moderate negative skew at all ranges, and kurtosis test indicated all ranges 
were slightly leptokurtic. 

2. Time variation of wind was not taken into account for this analysis; further 
study of variation of wind in both space and time may refine understanding of 
the underlying distribution of the wind. 

3. Notation has been adjusted from what appears in the source. 

4. As before, Anderson-Darling and Kolmogorov-Smirnov indicated departures 
from normality; skewness indicated approximate symmetry with a small but 
persistent negative skew across all ranges and kurtosis indicated that all but the 
2 furthest ranges were somewhat leptokurtic. 
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Appendix A. Synthesis of McCoy and Weinacht-Cooper-Newill 
Methodologies
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Weinacht1 gives the following expressions to determine the time of flight and 
residual velocity of a projectile in the supersonic range: 

 𝑉𝑉𝑋𝑋𝑖𝑖 = 𝑉𝑉0 �1 + 𝑛𝑛 �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
0

𝑋𝑋𝑖𝑖
𝑉𝑉0
�
1
𝑛𝑛              , 𝑛𝑛 ≠ 0 . (A-1) 

 𝑉𝑉𝑋𝑋𝑖𝑖 = 𝑉𝑉0𝑒𝑒
�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�0

𝑋𝑋𝑖𝑖
𝑉𝑉0              , 𝑛𝑛 = 0 . (A-2) 

 𝑡𝑡𝑋𝑋𝑖𝑖 = 1

(𝑛𝑛−1)�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�0
��1 + 𝑛𝑛 �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�
0

𝑋𝑋𝑖𝑖
𝑉𝑉0
�
1−1𝑛𝑛 − 1� , 𝑛𝑛 ≠ 0,𝑛𝑛 ≠ 1 . (A-3) 

 𝑡𝑡𝑋𝑋𝑖𝑖 = 1

�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�0
ln �1 + �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�
0

𝑋𝑋𝑖𝑖
𝑉𝑉0
�            , 𝑛𝑛 = 1 . (A-4) 

 𝑡𝑡𝑋𝑋𝑖𝑖 = 1

�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�0
�1 − 𝑒𝑒−�

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑�0

𝑋𝑋𝑖𝑖
𝑉𝑉0�              , = 0 , (A-5) 

where 

𝑉𝑉0 = muzzle velocity, 

�𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
0
 = muzzle retardation (s-1), and 

𝑛𝑛 = exponent defining the shape of the drag versus Mach number curve (unitless). 

These equations can be combined with Eq. 2, given by McCoy,2 to produce closed-
form expressions for the horizontal deflection imparted at range 𝑅𝑅 on a projectile 
that remains supersonic throughout its flight by a constant crosswind between 
ranges 𝑋𝑋𝑖𝑖−1 and 𝑋𝑋𝑖𝑖 in terms of crosswind velocity between 𝑋𝑋𝑖𝑖−1 and 𝑋𝑋𝑖𝑖, muzzle 
velocity, muzzle retardation, and the exponent defining the shape of the drag curve. 

𝑍𝑍𝑅𝑅𝑖𝑖 =
𝑊𝑊𝑍𝑍(𝑖𝑖−1,𝑖𝑖)

𝑉𝑉0(𝑛𝑛−1)�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�0
�
𝑉𝑉0+�

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑�0

�(𝑛𝑛−1)𝑅𝑅+𝑋𝑋𝑖𝑖�

�1+𝑛𝑛�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�0
𝑋𝑋𝑖𝑖
𝑉𝑉0
�
1
𝑛𝑛

−
𝑉𝑉0+�

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑�0

�(𝑛𝑛−1)𝑅𝑅+𝑋𝑋𝑖𝑖−1�

�1+𝑛𝑛�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�0
𝑋𝑋𝑖𝑖−1
𝑉𝑉0

�
1
𝑛𝑛

�  , 𝑛𝑛 ≠ 0,𝑛𝑛 ≠ 1 . (A-6) 

𝑍𝑍𝑅𝑅𝑖𝑖 = 𝑊𝑊𝑍𝑍(𝑖𝑖−1,𝑖𝑖) �
1

�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�0
ln �

𝑉𝑉0+�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑�0

𝑋𝑋𝑖𝑖

𝑉𝑉0+�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑�0

𝑋𝑋𝑖𝑖−1
� + � 𝑅𝑅−𝑋𝑋𝑖𝑖

𝑉𝑉0+�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑�0

𝑋𝑋𝑖𝑖
− 𝑅𝑅−𝑋𝑋𝑖𝑖−1

𝑉𝑉0+�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑�0

𝑋𝑋𝑖𝑖−1
�� , 𝑛𝑛 = 1 . (A-7) 

𝑍𝑍𝑅𝑅𝑖𝑖 = 𝑊𝑊𝑍𝑍(𝑖𝑖−1,𝑖𝑖) ��
−1

�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�0
+ 𝑅𝑅−𝑋𝑋𝑖𝑖

𝑉𝑉0
� 𝑒𝑒−�

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑�0

𝑋𝑋𝑖𝑖
𝑉𝑉0 − � −1

�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�0
+ 𝑅𝑅−𝑋𝑋𝑖𝑖−1

𝑉𝑉0
� 𝑒𝑒−�

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑�0

𝑋𝑋𝑖𝑖−1
𝑉𝑉0 � , 𝑛𝑛 = 0 . (A-8) 

                                                 
1Weinacht PA. Direct-fire trajectory model for supersonic, transonic, and subsonic projectile flight. 

Aberdeen Proving Ground (MD): Army Research Laboratory (US); 2014 July. Report No.: ARL-TR-6998. 
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Appendix B. Supplementary Monte Carlo Results 
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Figures B-1 through B-4 show the standard deviation of the Equivalent Constant 
Crosswind (𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸) versus range and examining the changes to 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸 with changes in 
drag coefficient exponent, muzzle velocity, projectile mass, and subsonic drag 
coefficient. The drag coefficient exponents and masses were chosen from among a 
list of fielded small-arms projectiles and thus are not evenly spaced.  

Changing the drag coefficient exponent alone has very little effect on 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸 
(approximately 1%) at any range, as shown in Fig. B-1. 

 

Fig. B-1 Comparison of different values of 𝒏𝒏 

Changing the projectile’s muzzle velocity has more of an effect on the value of 
𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸 than changing the drag coefficient exponent (up to 5% in the most extreme 
cases examined), but that effect is seen mostly at extended ranges (Fig. B-2). Even 
at the largest, though, the effects on 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸 induced by increasing or decreasing 
muzzle velocity are dwarfed by the effects of changing wind standard deviation and 
spatial correlation. 
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Fig. B-2 Comparison of different values of 𝑽𝑽𝟎𝟎 

Changing projectile mass has very little effect on 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸 (at most between 1% and 
2%) (Fig. B-3). The observed differences in 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸 come from the effect of changing 
mass on lag time, which is a primary driver of deflection due to crosswind. 

 

Fig. B-3 Comparison of different projectile masses 

The subsonic drag coefficient plays no role in the trajectory until the range at which 
the projectile passes into the transonic drag regime, so Fig. B-4 shows a perfect 
overlap of all 3 cases until almost 600 m. The difference in 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸 observed thereafter 
between different cases does not exceed 0.5%. 
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Fig. B-4 Comparison of different subsonic drag coefficients 
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Appendix C. Independent and Autoregressive Models 
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C.1 Independent Measurements 

The simplest choice was to draw the wind at each station independently using 𝜇𝜇𝑛𝑛 
and 𝜎𝜎𝑛𝑛. This guaranteed that the behavior of the wind at each station was as 
observed. 

To assess how well this independent model performed, we calculated the 
Equivalent Constant Crosswind (ECC) values across the range in question for each 
variable wind profile generated (ECCI), aggregated them, and computed their mean 
and standard deviation to compare with those of the observed data. Figure C-1 
shows 𝜇𝜇𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵 and 𝜇𝜇𝐸𝐸𝐸𝐸𝐸𝐸𝐼𝐼 versus range, and Fig. C-2 shows  𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵 and 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸𝐼𝐼 versus 
range. 

 

Fig. C-1 Comparison of 𝝁𝝁𝑬𝑬𝑬𝑬𝑬𝑬𝑩𝑩 and 𝝁𝝁𝑬𝑬𝑬𝑬𝑬𝑬𝑰𝑰  
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Fig. C-2 Comparison of 𝝈𝝈𝑬𝑬𝑬𝑬𝑬𝑬𝑩𝑩  and 𝝈𝝈𝑬𝑬𝑬𝑬𝑬𝑬𝑰𝑰  

𝜇𝜇𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵 and 𝜇𝜇𝐸𝐸𝐸𝐸𝐸𝐸𝐼𝐼 were within 0.3% of each other at all ranges, but 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵 and 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸𝐼𝐼 
diverged with range, reaching a discrepancy of more than 40% by the maximum 
range. There is much more variation in ECCB than in ECCI. This is at least in part 
due to ECCI not taking into account the correlation values between stations that we 
calculated in Section 2 of the main report. Including those correlations called for a 
more sophisticated model. 

C.2 First-Order Autoregressive Model 

An autoregressive model takes into account the correlation between measurements. 
The basic form of a first-order autoregressive model (so-called because it takes into 
account the first previous value to generate the next value) generates a sequence of 
values, 𝑋𝑋𝑛𝑛, each with zero mean and unit variance, which depend upon the previous 
states of the sequence, a set of correlation coefficients (𝜌𝜌𝑛𝑛,𝑚𝑚), and a normally 
distributed white-noise process with zero mean and unit variance (𝐺𝐺𝑛𝑛).1 

 𝑋𝑋𝑛𝑛 = 𝜌𝜌𝑛𝑛−1,𝑛𝑛𝑋𝑋𝑛𝑛−1 + 𝐺𝐺𝑛𝑛�1 − 𝜌𝜌𝑛𝑛−1,𝑛𝑛
2 . (C-1) 

𝑋𝑋1 is simply drawn against a normal distribution with zero mean and unit variance. 
If we want the members of the sequence 𝑋𝑋𝑛𝑛 to have a different mean and standard 
deviation (denoted 𝜇𝜇𝑋𝑋 and 𝜎𝜎𝑋𝑋, respectively), we simply transform the sequence in 
the following way: 

                                                 
1Deserno M. How to generate exponentially correlated Gaussian random numbers. Los Angeles (CA): 

UCLA Department of Chemistry and Biochemistry; 2002 Aug [accessed 2016 Jan 28]. http//www.cmu 
.edu/biolphys/deserno/pdf/corr _gaussian_random.pdf. 
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 𝑊𝑊𝑛𝑛 = 𝜇𝜇𝑋𝑋 + 𝜎𝜎𝑋𝑋𝑋𝑋𝑛𝑛 . (C-2) 

In our case, the members of the sequence represent the anemometers in ascending 
order. Since each member of the sequence 𝑊𝑊𝑛𝑛 has the same mean and standard 
deviation and our anemometer measurements have different means and standard 
deviations, we need a modified formula to preserve those measurements.1  

 𝑊𝑊𝑛𝑛 = 𝜌𝜌𝑛𝑛−1,𝑛𝑛
𝜎𝜎𝑛𝑛
𝜎𝜎𝑛𝑛−1

(𝑊𝑊𝑛𝑛−1 − 𝜇𝜇𝑛𝑛−1) + 𝜎𝜎𝑛𝑛𝐺𝐺𝑛𝑛�1 − 𝜌𝜌𝑛𝑛−1,𝑛𝑛
2 + 𝜇𝜇𝑛𝑛 . (C-3) 

Deserno1 did not include the calculations, but we can easily show that in this 
formulation, each member of the sequence, 𝑊𝑊𝑛𝑛, has mean 𝜇𝜇𝑛𝑛 and standard deviation 
𝜎𝜎𝑛𝑛 (variance 𝜎𝜎𝑛𝑛2). First in the sequence is the mean. 

 𝐸𝐸(𝑊𝑊𝑛𝑛) = 𝐸𝐸(𝜌𝜌𝑛𝑛−1,𝑛𝑛
𝜎𝜎𝑛𝑛
𝜎𝜎𝑛𝑛−1

(𝑊𝑊𝑛𝑛−1 − 𝜇𝜇𝑛𝑛−1) + 𝜎𝜎𝑛𝑛𝐺𝐺𝑛𝑛�1 − 𝜌𝜌𝑛𝑛−1,𝑛𝑛
2 + 𝜇𝜇𝑛𝑛) .  

 𝐸𝐸(𝑊𝑊𝑛𝑛) = 𝐸𝐸(𝜌𝜌𝑛𝑛−1,𝑛𝑛
𝜎𝜎𝑛𝑛
𝜎𝜎𝑛𝑛−1

(𝑊𝑊𝑛𝑛−1 − 𝜇𝜇𝑛𝑛−1)) + 𝐸𝐸(𝜎𝜎𝑛𝑛𝐺𝐺𝑛𝑛�1 − 𝜌𝜌𝑛𝑛−1,𝑛𝑛
2) + 𝐸𝐸(𝜇𝜇𝑛𝑛) .  

 𝐸𝐸(𝑊𝑊𝑛𝑛) = 𝜌𝜌𝑛𝑛−1,𝑛𝑛
𝜎𝜎𝑛𝑛
𝜎𝜎𝑛𝑛−1

𝐸𝐸(𝑊𝑊𝑛𝑛−1 − 𝜇𝜇𝑛𝑛−1) + 𝜎𝜎𝑛𝑛�1 − 𝜌𝜌𝑛𝑛−1,𝑛𝑛
2𝐸𝐸(𝐺𝐺𝑛𝑛) + 𝜇𝜇𝑛𝑛 .  

 𝐸𝐸(𝑊𝑊𝑛𝑛) = 𝜌𝜌𝑛𝑛−1,𝑛𝑛
𝜎𝜎𝑛𝑛
𝜎𝜎𝑛𝑛−1

(𝐸𝐸(𝑊𝑊𝑛𝑛−1) − 𝐸𝐸(𝜇𝜇𝑛𝑛−1)) + 𝜎𝜎𝑛𝑛�1 − 𝜌𝜌𝑛𝑛−1,𝑛𝑛
2 ∙ 0 + 𝜇𝜇𝑛𝑛 .  

 𝐸𝐸(𝑊𝑊𝑛𝑛) = 𝜌𝜌𝑛𝑛−1,𝑛𝑛
𝜎𝜎𝑛𝑛
𝜎𝜎𝑛𝑛−1

(𝜇𝜇𝑛𝑛−1 − 𝜇𝜇𝑛𝑛−1) + 𝜇𝜇𝑛𝑛 .  

 𝐸𝐸(𝑊𝑊𝑛𝑛) = 𝜇𝜇𝑛𝑛 .   

Next is the variance (using the fact that 𝐺𝐺𝑛𝑛 and 𝑊𝑊𝑛𝑛 are independent, and therefore 
have zero covariance). 

 𝑉𝑉𝑉𝑉𝑉𝑉(𝑊𝑊𝑛𝑛) = 𝐸𝐸[(𝜌𝜌𝑛𝑛−1,𝑛𝑛
𝜎𝜎𝑛𝑛
𝜎𝜎𝑛𝑛−1

(𝑊𝑊𝑛𝑛−1 − 𝜇𝜇𝑛𝑛−1) + 𝜎𝜎𝑛𝑛𝐺𝐺𝑛𝑛�1 − 𝜌𝜌𝑛𝑛−1,𝑛𝑛
2 + 𝜇𝜇𝑛𝑛 − 𝜇𝜇𝑛𝑛)2] .  

 𝑉𝑉𝑉𝑉𝑉𝑉(𝑊𝑊𝑛𝑛) = 𝐸𝐸[(𝜌𝜌𝑛𝑛−1,𝑛𝑛
2 𝜎𝜎𝑛𝑛2

𝜎𝜎𝑛𝑛−12
(𝑊𝑊𝑛𝑛−1 − 𝜇𝜇𝑛𝑛−1)2 + 𝜎𝜎𝑛𝑛2𝐺𝐺𝑛𝑛

2�1− 𝜌𝜌𝑛𝑛−1,𝑛𝑛
2�+ 2𝜌𝜌𝑛𝑛−1,𝑛𝑛

𝜎𝜎𝑛𝑛2

𝜎𝜎𝑛𝑛−1
�1 − 𝜌𝜌𝑛𝑛−1,𝑛𝑛

2(𝑊𝑊𝑛𝑛−1 − 𝜇𝜇𝑛𝑛−1)𝐺𝐺𝑛𝑛]  

 𝑉𝑉𝑉𝑉𝑉𝑉(𝑊𝑊𝑛𝑛) = 𝜌𝜌𝑛𝑛−1,𝑛𝑛
2 𝜎𝜎𝑛𝑛2

𝜎𝜎𝑛𝑛−12
𝐸𝐸(𝑊𝑊𝑛𝑛−1 − 𝜇𝜇𝑛𝑛−1)2 + 𝜎𝜎𝑛𝑛2�1− 𝜌𝜌𝑛𝑛−1,𝑛𝑛

2�𝐸𝐸(𝐺𝐺𝑛𝑛
2) + 2𝜌𝜌𝑛𝑛−1,𝑛𝑛

𝜎𝜎𝑛𝑛2

𝜎𝜎𝑛𝑛−1
�1− 𝜌𝜌𝑛𝑛−1,𝑛𝑛

2𝐸𝐸((𝑊𝑊𝑛𝑛−1 − 𝜇𝜇𝑛𝑛−1)𝐺𝐺𝑛𝑛)  

 𝑉𝑉𝑉𝑉𝑉𝑉(𝑊𝑊𝑛𝑛) = 𝜌𝜌𝑛𝑛−1,𝑛𝑛
2𝜎𝜎𝑛𝑛2 + 𝜎𝜎𝑛𝑛2�1 − 𝜌𝜌𝑛𝑛−1,𝑛𝑛

2� + 2𝜌𝜌𝑛𝑛−1,𝑛𝑛
𝜎𝜎𝑛𝑛2

𝜎𝜎𝑛𝑛−1
�1 − 𝜌𝜌𝑛𝑛−1,𝑛𝑛

2 ∙ 0 . 

 𝑉𝑉𝑉𝑉𝑉𝑉(𝑊𝑊𝑛𝑛) = 𝜌𝜌𝑛𝑛−1,𝑛𝑛
2𝜎𝜎𝑛𝑛2 + 𝜎𝜎𝑛𝑛2�1 − 𝜌𝜌𝑛𝑛−1,𝑛𝑛

2� . 

 𝑉𝑉𝑉𝑉𝑉𝑉(𝑊𝑊𝑛𝑛) = 𝜎𝜎𝑛𝑛2 . 

Using 𝜇𝜇𝑛𝑛, 𝜎𝜎𝑛𝑛, and 𝜌𝜌𝑛𝑛,𝑚𝑚 from Section 2 of the report, we can now implement the 
first-order autoregressive model and compare its ECC results (ECCAR1) with the 
observed data (for all subsequent models we will only show the charts illustrating 
𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸 because 𝜇𝜇𝐸𝐸𝐸𝐸𝐸𝐸 was accurate to within 0.5% at any range using any proposed 
model). This is shown in Fig. C-3 along with the results from the independent 
model.  
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Fig. C-3 Comparison of 𝝈𝝈𝑬𝑬𝑬𝑬𝑬𝑬𝑩𝑩 , 𝝈𝝈𝑬𝑬𝑬𝑬𝑬𝑬𝑰𝑰 , and 𝝈𝝈𝑬𝑬𝑬𝑬𝑬𝑬𝑨𝑨𝑨𝑨𝑨𝑨  

As shown, 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴1diverges far less from 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵 across all ranges than 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸𝐼𝐼 but it 
still underestimates 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵 by almost 20% at the longer ranges. This raises the 
question of whether it is valuable to take more correlations into account.  

C.3 Higher-Order Autoregressive Models 

Deserno1 only provides the technique to implement a first-order autoregressive 
model. We derived a general formula to model a given order of autoregression and 
also preserve 𝜇𝜇𝑛𝑛 and 𝜎𝜎𝑛𝑛. As an example, we look at extending from a first-order to 
a second-order autoregressive model. That would involve an expression like the 
following2: 

𝑊𝑊𝑛𝑛 = 𝜌𝜌𝑛𝑛−1,𝑛𝑛
𝜎𝜎𝑛𝑛
𝜎𝜎𝑛𝑛−1

(𝑊𝑊𝑛𝑛−1 − 𝜇𝜇𝑛𝑛−1) + 𝜎𝜎𝑛𝑛𝐺𝐺𝑛𝑛,1�1− 𝜌𝜌𝑛𝑛−1,𝑛𝑛
2 + 𝜌𝜌𝑛𝑛−2,𝑛𝑛

𝜎𝜎𝑛𝑛
𝜎𝜎𝑛𝑛−2

(𝑊𝑊𝑛𝑛−2 − 𝜇𝜇𝑛𝑛−2) + 𝜎𝜎𝑛𝑛𝐺𝐺𝑛𝑛,2�1− 𝜌𝜌𝑛𝑛−2,𝑛𝑛
2 + 𝜇𝜇𝑛𝑛.(C-4) 

But that expression, though it takes into account the previous 2 values of 𝑊𝑊𝑛𝑛 and 
the corresponding correlation coefficients and preserves 𝜇𝜇𝑛𝑛 (this can be verified 
analogously to the process shown in Section 5.2 and is not shown here), does not 
preserve the variance as 𝜎𝜎𝑛𝑛.2 Finding the variance of Eq. C-4 begins as it did in the 
first-order case, and the steps relying on independence of the 𝐺𝐺𝑛𝑛 terms with the 
other variables will be omitted. 

 𝑉𝑉𝑉𝑉𝑉𝑉(𝑊𝑊𝑛𝑛) = 𝐸𝐸(𝜌𝜌𝑛𝑛−1,𝑛𝑛
𝜎𝜎𝑛𝑛
𝜎𝜎𝑛𝑛−1

(𝑊𝑊𝑛𝑛−1 − 𝜇𝜇𝑛𝑛−1) + 𝜎𝜎𝑛𝑛𝐺𝐺𝑛𝑛,1�1− 𝜌𝜌𝑛𝑛−1,𝑛𝑛
2 + 𝜌𝜌𝑛𝑛−2,𝑛𝑛

𝜎𝜎𝑛𝑛
𝜎𝜎𝑛𝑛−2

(𝑊𝑊𝑛𝑛−2 − 𝜇𝜇𝑛𝑛−2) + 𝜎𝜎𝑛𝑛𝐺𝐺𝑛𝑛,2�1− 𝜌𝜌𝑛𝑛−2,𝑛𝑛
2)2 . 

 

                                                 
2We specify 𝐺𝐺𝑛𝑛,1 and 𝐺𝐺𝑛𝑛,2 to clarify that the white noise processes are separate and independent. 
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𝑉𝑉𝑉𝑉𝑉𝑉(𝑊𝑊𝑛𝑛) = 𝐸𝐸(𝜌𝜌𝑛𝑛−1,𝑛𝑛
2 𝜎𝜎𝑛𝑛2

𝜎𝜎𝑛𝑛−12
(𝑊𝑊𝑛𝑛−1 − 𝜇𝜇𝑛𝑛−1)2 + 𝜎𝜎𝑛𝑛2𝐺𝐺𝑛𝑛,1

2�1 − 𝜌𝜌𝑛𝑛−1,𝑛𝑛
2� +𝜌𝜌𝑛𝑛−2,𝑛𝑛

2 𝜎𝜎𝑛𝑛2

𝜎𝜎𝑛𝑛−22
(𝑊𝑊𝑛𝑛−2 − 𝜇𝜇𝑛𝑛−2)2 

                  +𝜎𝜎𝑛𝑛2𝐺𝐺𝑛𝑛,2
2�1 − 𝜌𝜌𝑛𝑛−2,𝑛𝑛

2�  + 2 ∙  𝜌𝜌𝑛𝑛−1,𝑛𝑛𝜌𝜌𝑛𝑛−2,𝑛𝑛
𝜎𝜎𝑛𝑛2

𝜎𝜎𝑛𝑛−1𝜎𝜎𝑛𝑛−2
(𝑊𝑊𝑛𝑛−1 − 𝜇𝜇𝑛𝑛−1)(𝑊𝑊𝑛𝑛−2 − 𝜇𝜇𝑛𝑛−2)) .  

𝑉𝑉𝑉𝑉𝑉𝑉(𝑊𝑊𝑛𝑛) = 2𝜎𝜎𝑛𝑛2 + 2 ∙  𝜌𝜌𝑛𝑛−1,𝑛𝑛𝜌𝜌𝑛𝑛−2,𝑛𝑛
𝜎𝜎𝑛𝑛2

𝜎𝜎𝑛𝑛−1𝜎𝜎𝑛𝑛−2
𝐸𝐸((𝑊𝑊𝑛𝑛−1 − 𝜇𝜇𝑛𝑛−1)(𝑊𝑊𝑛𝑛−2 − 𝜇𝜇𝑛𝑛−2)).  

 𝑉𝑉𝑉𝑉𝑉𝑉(𝑊𝑊𝑛𝑛) = 2𝜎𝜎𝑛𝑛2 + 2 ∙  𝜌𝜌𝑛𝑛−1,𝑛𝑛𝜌𝜌𝑛𝑛−2,𝑛𝑛
𝜎𝜎𝑛𝑛2

𝜎𝜎𝑛𝑛−1𝜎𝜎𝑛𝑛−2
𝜌𝜌𝑛𝑛−2,𝑛𝑛−1𝜎𝜎𝑛𝑛−1𝜎𝜎𝑛𝑛−2 . 

 𝑉𝑉𝑉𝑉𝑉𝑉(𝑊𝑊𝑛𝑛) = 2𝜎𝜎𝑛𝑛2 + 2 ∙  𝜌𝜌𝑛𝑛−1,𝑛𝑛𝜌𝜌𝑛𝑛−2,𝑛𝑛𝜌𝜌𝑛𝑛−2,𝑛𝑛−1𝜎𝜎𝑛𝑛2 .  

 𝑉𝑉𝑉𝑉𝑉𝑉(𝑊𝑊𝑛𝑛) = 𝜎𝜎𝑛𝑛2(2 +  2𝜌𝜌𝑛𝑛−1,𝑛𝑛𝜌𝜌𝑛𝑛−2,𝑛𝑛𝜌𝜌𝑛𝑛−2,𝑛𝑛−1) .  

This points the way forward for how to modify our expression to preserve the 
observed means and standard deviations at the stations, which is accomplished in 
the following expression: 

 𝑊𝑊𝑛𝑛 =
𝜌𝜌𝑛𝑛−1,𝑛𝑛

𝜎𝜎𝑛𝑛
𝜎𝜎𝑛𝑛−1

(𝑊𝑊𝑛𝑛−1−𝜇𝜇𝑛𝑛−1)+𝜎𝜎𝑛𝑛𝐺𝐺𝑛𝑛,1�1−𝜌𝜌𝑛𝑛−1,𝑛𝑛2+𝜌𝜌𝑛𝑛−2,𝑛𝑛
𝜎𝜎𝑛𝑛

𝜎𝜎𝑛𝑛−2
(𝑊𝑊𝑛𝑛−2−𝜇𝜇𝑛𝑛−2)+𝜎𝜎𝑛𝑛𝐺𝐺𝑛𝑛,2�1−𝜌𝜌𝑛𝑛−2,𝑛𝑛2

�2+ 2𝜌𝜌𝑛𝑛−1,𝑛𝑛𝜌𝜌𝑛𝑛−2,𝑛𝑛𝜌𝜌𝑛𝑛−2,𝑛𝑛−1
+ 𝜇𝜇𝑛𝑛 .  (C-5) 

More generally, we can derive an expression that will preserve 𝜇𝜇𝑛𝑛 and 𝜎𝜎𝑛𝑛 for any 
order 𝑝𝑝 of autoregression. We assume that for an autoregressive model of order 𝑝𝑝, 
if 𝑛𝑛 ≤ 𝑝𝑝 + 1, the model will use all available previous measurements to generate 
the 𝑛𝑛𝑡𝑡ℎ measurement. 

 𝑊𝑊𝑛𝑛 = 𝜇𝜇𝑛𝑛 + ∑
(𝜌𝜌𝑛𝑛−𝑖𝑖,𝑛𝑛

𝜎𝜎𝑛𝑛
𝜎𝜎𝑛𝑛−𝑖𝑖

(𝑊𝑊𝑛𝑛−𝑖𝑖−𝜇𝜇𝑛𝑛−𝑖𝑖)+𝜎𝜎𝑛𝑛𝐺𝐺𝑛𝑛,𝑖𝑖�1−𝜌𝜌𝑛𝑛−𝑖𝑖,𝑛𝑛2)

𝐶𝐶
L
𝑖𝑖=1  , (C-6) 

where 𝐿𝐿 and 𝐶𝐶 are constants determined by 

 𝐿𝐿 = min (𝑝𝑝,𝑛𝑛 − 1) . (C-7) 

 𝐶𝐶 = �L + ∑ ∑ 2𝜌𝜌𝑛𝑛−𝑖𝑖,𝑛𝑛𝜌𝜌𝑛𝑛−𝑗𝑗,𝑛𝑛𝜌𝜌𝑛𝑛−𝑗𝑗,𝑛𝑛−𝑖𝑖
L
𝑗𝑗=𝑖𝑖+1

L−1
𝑖𝑖=1   . (C-8) 

With this expression in hand, we can implement higher-order autoregressive 
models and compare their ECC results with the observed data. Fig. C-4 shows the 
results from using autoregressive models up to order 5. All curves represent ECC 
determined using the M855/M4 ammunition/weapon configuration. 
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Fig. C-4 Multiple-order autoregression 𝝈𝝈𝑬𝑬𝑬𝑬𝑬𝑬 results 

Each higher order of autoregression produces results that are marginally closer to 
the observed data than the next lower level, but there is little difference between the 
models’ performance past the third-order model. The fourth- and fifth-order models 
overlap almost completely and produce only minimal gains over the third-order 
model. 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴3  stays within 10% of 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵 across the whole range, though it 
persistently underestimates 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵 (as do all of the models’ results). 

Figure C-4 and the persistent gap between the models’ results and the observed 
results raise the question of whether the models tend to accumulate errors with 
increasing range or whether some other phenomenon could account for the gap. 
One way we can address that question is to reverse the order of the anemometers 
and determine 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵 if we assumed that we were standing at station A10 and looking 
at station A10. Fig. C-5 shows these results, which once again assume the M855/M4 
configuration. 
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Fig. C-5 Reversed direction multiple-order autoregression 𝝈𝝈𝑬𝑬𝑬𝑬𝑬𝑬 results 

𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴4  stays consistently within 0.4% of 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵 across all ranges when the 
anemometers are reversed. 

The model’s close adherence to the observed data in this case should not be 
overemphasized, however. There still remains a gap between the modeled results 
and the observed results in some cases, and upon examination, while they often do 
a good job of replicating the behavior of the wind data from Fort Benning, the 
autoregressive models of all orders have drawbacks that significantly limit the 
reliability of their performance in general. 

Because the autoregressive models implicitly order the wind measurements and 
only incorporate crosswinds from one direction when generating new 
measurements, they are not equipped to model changes in correlation that are 
otherwise unpredictable from the foregoing data. In Table 2 of the main report, the 
average correlation between adjacent stations from A1 to A5 is 0.25 while the 
average correlation between adjacent stations from A6 to A10 is 0.48. Nothing about 
the correlations between A1 and A5 indicates such a jump in correlation for the 
subsequent stations, and, looking in the other direction, nothing about the 
correlations between A6 and A10 indicates such a drop in correlation for subsequent 
stations. Since the correlations are not inherently directional, they cannot be a 
function of the preceding correlations (for whichever ordering is arbitrarily chosen) 
and cannot be preserved without a model that takes them all into account from the 
start. 
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